
1

A MULTIBLOCK APPROACH FOR CALCULATING INCOMPRESSIBLE FLUID
FLOWS ON UNSTRUCTURED GRIDS

 Chunhua Sheng∗ and David L. Whitfield†

Computational Fluid Dynamics Laboratory
NSF Engineering Research Center, Mississippi State, MS 39762

W. Kyle Anderson‡

NASA Langley Research Center, Hampton, VA 23681

Abstract

A multiblock approach is presented for solving
two–dimensional incompressible turbulent flows on un-
structured grids. The artificial compressibility form of
the governing equations is solved by a vertex–centered,
finite–volume implicit scheme which uses a backward
Euler time discretization. Point Gauss–Seidel relax-
ations are used to solve the linear system of equations at
each time step. This work introduces a multiblock strat-
egy to the solution procedure, which greatly improves
the efficiency of the algorithm by significantly reducing
the memory requirements while not increasing the CPU
time. Results presented in this work shows that the cur-
rent multiblock algorithm requires 70% less memory
than the single block algorithm.

Introduction

In the past decade, much progress has been made in
developing computational techniques for predicting
flow fields about complex configurations. These tech-
niques include both structured and unstructured grid al-
gorithms, which have their own advantages and disad-
vantages. The biggest advantage of the unstructured
grid approach over the structured grid approach is that
the process of grid generation for complex geometries
is greatly simplified. Another advantage is that unstruc-
tured grids lend themselves to adaptive grid methods be-
cause new nodes can be added to a localized region of
the mesh by modifying a small subset of the overall grid
data structure. Although the unstructured grid approach
enjoys these advantages over structured grids, flow
solvers that utilize it suffer several disadvantages.
These primarily include a factor of 2–3 increase in
memory requirements and computer run times on a per
grid point basis [1].

*Research Engineer, Member AIAA
†Professor, Member AIAA
‡Senior Research Scientist, Member AIAA
Copyright� 1997 by the American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.

This work introduces a multiblock approach to cal-
culate the two–dimensional incompressible Euler and
Navier–Stokes flows based on unstructured grids. The
multiblock technique has been widely and successfully
used in solution algorithms of structured grids to solve
flows about complex configurations [2][3]. The ap-
plication of the multiblock approach in the unstructured
grid area seems not to have received much attention.
Part of the reason for that is due to the fact that computa-
tional meshes for complex geometries can be relatively
easily generated using unstructured grids without the
aid of the multiblock technique. However, studies of
structured grid algorithms by the present authors found
that the multiblock approach can also significantly re-
duce the memory requirements by almost one order of
magnitude in real–world flow computations [2][3].
These studies and findings motivated the current work
to use the same multiblock concept to reduce the
memory requirements of an unstructured grid algo-
rithm.

The baseline code was originally developed at
NASA Langley Research Center called FUN2DI [1]. It
solves the artificial compressibility form of the two–di-
mensional incompressible Euler and Navier Stokes
equations on unstructured meshes. Two different turbu-
lence models (Baldwin and Barth [4] and Spalart and
Allmaras [5]) are included in the code for turbulent flow
computations, although the current work only uses the
latter model. The discretized scheme uses a vertex–cen-
tered finite–volume upwind approximation with edge–
based data structure. The numerical fluxes for the invis-
cid part are evaluated using the flux–difference splitting
of Roe scheme. The viscous terms are evaluated with
a finite–volume formulation that is equivalent to a Gal-
erkin type of approximation [6]. The time–advance-
ment algorithm is based on the linearized backward Eul-
er time–difference scheme, which yields a linear system
of equations for the solution at each time step. The
Gauss–Seidel procedure is used to solve the linear sys-
tem of equations at each time step. The original version
of the code also has the option to apply FMG–FAS mul-
tigrid V or W cycles to accelerate the convergence of the
solution to a steady state.

2

The idea to use the multiblock approach to reduce
the memory requirements of the algorithm is quite sim-
ple. Instead of solving the equations for all the nodes of
the grid at one time, the solution process is broken down
into several pieces (blocks) on the grid, which is per-
formed one by one. Because only one block is processed
at any time, the memory is allocated to store the data for
that block, which requires much less memory than that
to store the data for the whole grid. Special attention
should be paid to the block interfaces where the in-
formation must be properly passed from the other
blocks.

This paper is organized as follows. The artificial
compressibility form of the two–dimensional Re-
ynolds–averaging Navier–Stokes equations is first out-
lined, followed by the numerical procedures used in
Ref. [1]. The multiblock algorithm is introduced next,
which mainly includes grid decomposition, multiblock
implementation, and boundary treatment at block inter-
faces. Solutions of turbulent flows about a NACA 4412
airfoil and two 4–element airfoils are presented to dem-
onstrate the efficiency and accuracy of the current mul-
tiblock algorithm. Some conclusions are summarized in
the last section.

Governing Equations

Incompressible Navier–Stokes Equations

The unsteady two–dimensional incompressible Re-
ynolds–averaged Navier–Stokes equations without
body forces are written in Cartesian coordinates and in
conservative form. A pseudo–time derivative of pres-
sure is added to the continuity equation. The resulting
set of equations in integral form represents a system of
conservation laws for a control volume that relates the
rate of change of a vector of average state variables q to
the flux through the volume surface, which can be writ-
ten as

V
�q
�t ��

��

fi . n dl� �
��

fv . n dl � 0
 � � ^ ^ (1)

where n^ is the outward–pointing unit normal to the con-
trol volume V. The vector of dependent state variables
q and the inviscid and viscous fluxes normal to the con-

trol volume f
�

i and f
�

v are given as

q �
p
u

v

fi . n^ �
 �

��

u� � nx p

v� � ny p

 �

0

nx�xx � ny�xy

nx�xy � ny�yy

 fv . n^ �

where � is the artificial compressibility parameter; u and
v are the Cartesian velocity components in the x and y
directions, respectively; � is the velocity normal to the
surface of the control volume, where

 �� nx u � ny v

and p is the pressure. Note that the variables in the above
equations are nondimensionalized with the characteris-
tic length, freestream values of velocity, density, and
viscosity. Pressure is normalized using the following

relationship (p� p�)��� V2
�, where the subscript de-

notes a freestream or reference value. The shear stresses
in Eq. (1) are given as

�xx � (� � �t)
2

Re
ux

�yy � (� � �t)
2

Re
vy

�xy � (� � �t)
1

Re
(uy� vx)

where � and �t are the laminar and turbulent viscosities,
respectively, and Re is the Reynolds number.

Solution Algorithm

Finite–Volume Scheme

The baseline flow solver is a node–centered finite–
volume implicit scheme. The computational domain is
divided into a finite number of triangles from which
control volumes are formed that surround each vertex in
the mesh. The flow variables are stored at the vertices
of the triangle. Equation (1) is then numerically inte-
grated over the closed boundaries of the control vol-
umes surrounding each node. These control volumes
are formed by connecting the center of each triangle to
the midpoint of the edges, as shown in Figure 1. These
nonoverlapping control volumes combine to complete-
ly cover the domain and are considered to form a mesh
which is dual to the mesh composed of triangles formed
from the vertices.

Numerical Flux Evaluation

The numerical evaluation of the surface integrals
in Eq. (1) is conducted separately for the inviscid and
viscous contributions. The inviscid fluxes are obtained
on the faces of each control volume with a flux–differ-
ence–splitting scheme, while the viscous terms are eva-
luated with a finite–volume formulation that is equiva-
lent to a Galerkin type of approximation [1]. The
inviscid fluxes on the boundaries of the control volumes
are given by

3

Figure 1. Control volume surrounding a node

�

�

�

�

�

�

�

mesh

median dual

0

1

2

3

6

5

4 (boundary of
control volume)

�� 1

2
(fi (q

�; n^) � fi (q
�; n^))

 (2) � 1
2
�A � (q�� q�)

where � is the numerical flux, and fi is the flux vector
given in Eq. (1). A nonsingular eigensystem for the ma-
trix |A| was obtained in Ref. [1] and will not be repeated
here. Quantities q+ and q– are the values of the depen-
dent variables on the left and right side of the boundary
of the control volume. For first–order accurate differ-
encing, the data on the left and right sides of the cell face
(q+ and q–) are set equal to the data at the nodes lying on
either side of the cell face. For higher–order differenc-
ing, these values are computed with a Taylor series ex-
pansion about the central node of the control volume

q face � q node � �q . r� (3)

where r� is the vector that extends from the central node
to the midpoint of each edge, and �q is the gradient of
the dependent variables at the node.

The gradient �q can be evaluated with a least–
squares procedure in which the data surrounding each
node is assumed to behave linearly. The data at each
node surrounding the center node may be expressed as

 q i � q o � q xo
(xi � xo)

 (4) � q yo
(yi � yo)

By expressing the data in a like manner at each of the N
surrounding nodes, an Nx2 system of equations is
formed as

 �x1 �y1

�x2

�xN �yN

�y2 �

q1 – q0

q2 – q0

– q0qN

 � � �
 � � �

 � � �
 � � �
 (5)

qxo

qyo

 � �

The equation above represents an overdetermined sys-
tem, which can be solved by using the normal equation
approach [7] to obtain the gradients at the nodes. Anoth-

er approach to calculate the gradients at the nodes, as
suggested in Ref. [6], is to use the Gram–Schmidt pro-
cess because of the sensitivity of the normal equation
approach to the condition number squared of the solu-
tion matrix [6]. The resulting formulas for calculating
the gradients at the center node in Figure 1 are given as

qxo � � W x
i (qi � qo)

qyo � � W y
i

(qi � qo)
 (6)

i= 1

i= 1

N

N

where the summation is over all the edges that connect
to the node and the weights are given by

W x
i �

[ryy (xi � xo)� rxy (yi � yo)]
rxxryy� r 2

xy

W y
i
�

[rxx (yi � yo)� rxy (xi � xo)]
rxxryy� r2

xy

with

rxx � � (xi � xo)2 , ryy � � (yi � yo)2

r xy � � (xi � xo)(yi � yo)
i= 1

N

i= 1

N

i= 1

N

Notice that the above Eq. (5) gives unweighted gra-
dients in which all the data surrounding the central node
are given equal consideration. It was found in Ref. [6]
that weighted gradients, which are evaluated by using
inverse distance or Green’s theorem, provide better ac-
curacy than unweighted gradients when actual gradients
are required, as in the production terms for the turbu-
lence model. However, for reconstructing nonlinear
data on highly stretched meshes, such as viscous grids,
an unweighted formulation is far superior to either in-
verse distance weighting or the use of gradients calcu-
lated with Green’s theorem [6].

The viscous flux contribution to the residual is ob-
tained using a finite–volume approach. In this ap-
proach, quantities such as velocity derivatives are first
evaluated in each triangle of the mesh and the viscosity
is computed as an average of the three nodes making up
the triangle.

Time Advancement Scheme

The time–advancement algorithm is based on the
linearized backward Euler time–differencing scheme,
which yields a linear system of equations for the solu-
tion at each time step:

[A]n {�q} n � { r} n (7)

where {r} n is the vector of steady–state residuals, {�q} n

represents the change in the dependent variables, and
the solution matrix [A]n is written as

4

[A]n � V

�t
I � �r

�q (8)

The solution of this system of equations is obtained
by a relaxation scheme in which {�q} n is obtained
through a sequence of iterations, {�q} i, which converge
to {�q} n. There are several variations of classic relax-
ation procedures which have been used in the past for
solving this linear system of equations [8][9]. In this
work, a point implicit Gauss–Seidel procedure as de-
scribed in Ref. [1] is used. To clarify the scheme, [A]n

is first written as a linear combination of two matrices
representing the diagonal and off–diagonal terms:

[A]n � [D]n � [O]n (9)

and the solution to the linear system of equations is ob-
tained by adopting a Gauss–Seidel type of strategy in
which all odd–numbered nodes are updated first, fol-
lowed by the solution of the even–numbered nodes.
This procedure can be represented as

[D] n {�q}

i�1 � � { r} n� [O] {�q}
(i�1)�i � (10)

where {�q} (i+1)/i is the most recent value of �q, which
will be at subiteration level i+1 for the odd–numbered
nodes that have been previously updated and at level i
for the even–numbered nodes. Normally 15–20 subit-
erations are adequate at each time step.

Turbulence Modelling

For the current study, the one–equation turbulence
model of Spalart and Allmaras is used [5]. Attention is
paid to the distance function when coupling this turbu-
lence model with the multiblock algorithm described
next. That is, the distance function for each node of the
grid is computed based on the closest distance to the
wall across all blocks, prior to processing each block.
In the solution process, the equation for turbulent vis-
cosity is solved using a backward–Euler time–stepping
scheme similar to that used for the flow variables, but
separated from the flow equations, This results in a
loosely coupled solution process that allows easy inter-
change with new turbulence models. For more details
about the turbulent model and its implementation, see
Refs. [5] and [1].

Multiblock Algorithm

Grid Decomposition

In the process to generate a structured grid in multi-
blocks, the physical domain is first divided into several
subdomains with prescribed block boundaries. The grid
in each block is then generated separately. To generate
a multiblock unstructured grid, however, the above pro-

cess does not apply because prescribed block bound-
aries will degrade the grid quality in these regions. The
multiblock unstructured grid is generated through a grid
decomposition process. First, the computational grid of
the whole physical domain is constructed within a single
block using a grid generation program called TRI8IT
[1]. Then, a domain decomposition method is used to
break the mesh into several sub–domains (or blocks) by
selecting all the cells that fall into the region set for each
subdomain. Each block contains a complete set of node
information, just like a separate grid. A file which con-
tains information to connect block–to–block interfaces
is also created. It was found that this domain decom-
position method has also been used for other purposes
in unstructured grid algorithms, such as for parallel
computations [10].

There are several criteria that are used to guide the
process of the grid decomposition. The first one is the
number of nodes or cells in each block. Since the overall
memory requirements of the code are determined by the
largest sized block, each block grid should contain a
nearly equal number of grid nodes or cells to achieve the
best reduction in memory usage. The second criterion
is the smoothness of block interfaces. A sawtoothed
block boundary, which often occurs near the wall sur-
faces in viscous grids, should be avoided because the ac-
curacy of gradients of flow variables along that bound-
ary can be severely compromised. Other criterion such
as selecting the least number of interfaces for a given
number of blocks to minimize the data communication
between blocks, should also be considered. Unfortu-
nately, these criteria are not automatically implemented
in the current version of the grid decomposition code,
but only through careful selection and adjustment of the
values that define the region for each block.

Multiblock Strategy and Memory Allocation

The implementation of the multiblock algorithm on
unstructured grids adopts a similar strategy as used in
structured grids in Ref. [2], i.e. a “vertical mode” in
which a complete cycle is completed in each block be-
fore proceeding to the next block. The advantage of this
approach is that the solution process (nonlinear and lin-
ear procedure) in each block is local and thus does not
depend on the solution in other blocks. The data at block
interfaces are treated as block boundary conditions
which are updated after each time step, as described be-
low. This nature of independence of the solution to other
blocks offers great flexibility in both implementation
and memory allocation for the algorithm, and also pro-
vides a natural platform for parallel implementations.
(In fact, the main difference between the multiblock al-
gorithm and the parallel implementation is that in the
former, the solution in each block is performed sequen-
tially in a prescribed order, while in the latter, all blocks

5

are solved simultaneously). The disadvantage of the
“vertical mode” is that if a grid has a lot of blocks, the
convergence rate could suffer because of the explicit na-
ture of the data interchange between blocks. Since the
main purpose of this work is to reduce the memory re-
quirements of the unstructured grid algorithm, the
memory allocation in the code must be done in a special
way to achieve the best efficiency in both memory usage
and CPU time. In the current work, all memory is allo-
cated either locally or globally. For local memory, only
the storage needed for the current block is allocated
when the solution process enters that block, and this
storage is freed at the time when the solution process
leaves the block. The new storage is allocated again
when the solution process moves to the next block. The
local memory allocation is mainly for variables which
do not need to be stored for all blocks, such as the flux
Jacobian matrix (most costly part in the memory usage)
which is updated after each time step in each block. On
the other hand, the global memory allocation means that
storage is allocated for all blocks and is not freed until
the end of the iterations. Some data such as conserved
flow variables, grid coordinates and the distance func-
tion in the turbulence model, must be stored in a global
way for all blocks. Therefore, by adopting the above
strategy for memory allocation, the memory require-
ments of the multiblock algorithm will be much less
than that of the single block algorithm where all
memory is allocated globally.

Notice that the way to compute and save the metric
quantities of the grid has great impact on the overall
memory usage in the multiblock algorithm, because the
storage for these metric terms is the second largest part
in the memory cost. If the metric terms of the grid are
computed and saved in each block, the memory reduc-
tion by this method is limited to the maximum of 45%
of the single grid algorithm. The reason for that is be-
cause the memory needed to store these metric terms
will exceed the memory reduced by the above multi-
block algorithm when a certain number of blocks is ex-
ceeded. An improvement can be made by allocating
these metric terms locally for each block and recomput-
ing them after each time step. Although this will
introduce some CPU time overhead, it is the most uni-
versal way for general unsteady problems with dynamic
moving grids, because for these problems the metric
terms of the grid must be recalculated after each time
step following the grid movement anyway. In fact, since
the memory usage of the algorithm is further reduced by
this method, the overall CPU time to execute the code
may be even less, because more data in the main
memory can now reside in a much faster accessible data
cache device which allows more efficient implementa-
tion of the code. Results in this work show that by adopt-
ing the above strategy, the memory savings by the multi-

block algorithm is significantly increased to up to 70%
of the single block algorithm, while the CPU time cost
is even 12% less than that of the multiblock code in
which the metric terms of the grid are allocated globally
for all blocks, and 24% less than that of the original
single block algorithm. In fact, over one order of magni-
tude in memory reduction is possible when the grid is di-
vided into more blocks.

 ⊕

 ⊕

 ⊕

 ⊕

 ⊕ ⊕ ⊕ ⊕

⊗ nodes at block interface

interior edges

phantom edges stored in buffer arrays

block interfaces

block 1

block 2

block 3

Figure 2. Nodes at block interfaces

Interface Treatment

Two major issues in the multiblock implementation
are the data structure and the treatment of the block in-
terfaces where two or more blocks are next to each other.
A natural choice is to use the same edge–based data
structure to store the data at block interfaces, and to treat
the nodes at the interface in the same way as the interior
nodes, see Figure 2. In the algorithm, a set of buffer ar-
rays is declared for each block to store the data on phan-
tom edges that surround the current block and have the
connection to the block interfaces (shown as dash lines
in Figure 2). In the actual computation, the nodes at
block interfaces (shown as circles in Figure 2) are com-
puted in two steps. In the first step, contributions from
interior edges (shown as solid lines in Figure 2) are col-
lected and values are stored at the nodes. This procedure
is the same as for all interior nodes. In the second step,
contributions from other blocks are added to these nodes
at block interfaces by looping over the phantom edges
surrounding the current block using the data stored in
the buffer arrays. The data in the buffer arrays are up-
dated after each time step when all blocks have been
processed. Notice that the above method provides syn-
chronized boundary conditions at the block interfaces,
since the gradient of flow variables is computed based
on the values at the same previous time step. This ensur-
es the performance of the multiblock algorithm to be

6

close to that of the single block algorithm. It should be
pointed out that an approximation is made here when
calculating the flux contributions from the phantom
edges. That is, the gradients at both nodes on each phan-
tom edge are assumed to be the same, which take the
value calculated at the node that is lying on the block in-
terfaces. The reason for such an approximation is for the
purpose of memory savings. However, numerical tests
show that the accuracy of the multiblock algorithm is
not significantly affected by this approximation, as dis-
cussed below.

Results

Results are shown below for three airfoil cases, a
NACA 4412 airfoil and two 4–element airfoils. The un-
structured grids are first generated in a single block with
a code described in Ref. [1], and a domain decomposi-
tion method is used to divide the grid into several
blocks. Solutions are obtained with the single block and
the multiblock algorithms, in which no multigrid
scheme is used in both algorithms. Comparison is made
for the memory usage and CPU time between the two
methods. Notice that for both multiblock and single
block algorithms, the metric quantities of the grid are re-
computed after each time step. For each case, the CFL
number has been linearly ramped from 20 to 200 over
100 iterations and 15 subiterations were used at each
time step to obtain an approximate solution of the linear
system. All computations were carried out on an SGI
R10000 194MHz single processor with 2GB in–core
memory and 2MB data cache size.

NACA 4412 Airfoil

The first case selected to test the current algorithm
is the viscous flow over a NACA 4412 airfoil. Computa-
tions are performed with both the single block and mul-
tiblock algorithms, and results are compared with the
experimental data obtained in Ref. [11]. The flow
conditions include an angle of attack of 13.870, a Re-
ynolds number of 1.52 million (based on the chord
length of the airfoil). The unstructured grid contains
10347 nodes and 20694 cells. The normalized grid
spacing at the wall is about 1.x10–5. The multiblock grid
is obtained by dividing the single block grid into three
blocks, with the number of nodes of 3030, 3625, and
3864 in each block, respectively (Figure 3).

Figure 4 shows the convergence histories for both
single block and multiblock algorithms. Both solutions
have about the same convergence rate which indicates
that the efficiency of the multiblock algorithm is not de-
graded with the current multiblock strategy and the
treatment of block interfaces. Figure 5 shows the com-
parison of the Cp distributions on the airfoil surface be-
tween the experiment and computations. The result

Figure 3. 3–block grid for NACA 4412 airfoil

0 200 400 600 800 1000
Time Step

–8.0

–6.0

–4.0

–2.0

Lo
g

(R
es

id
ua

l)

Single Block (MB=1)
Multiblock (MB=3)

Figure 4. Convergence histories of single block
and multiblock solutions

0.0 0.2 0.4 0.6 0.8 1.0
X/C

–6.0

–4.0

–2.0

0.0

2.0

C
p

Experiment
Single Block Grid
Multiblock Grid

Figure 5. Comparison of Cp distributions between the
experimental data and computations

7

Figure 6. Computed u velocity components around the airfoil

single block Multiblock

shows that both multiblock and single block solutions
are very close to each other, which are in good agree-
ment with the experimental data. Figure 6 shows u ve-
locity contours of both the single block and multiblock
solutions. The continuity of the contour lines across the
interfaces indicates the proper treatment of passing data
among blocks. The following Table 1 shows the
memory usage and CPU times for 1000 time iterations
for both single block and multiblock solutions. It is seen
that the memory requirements for the 3–block multi-
block code are 41% less than that for the single block
grid.

 Grid
(nodes)

 Block Memory
 (MB)

 CPU Time
 (mins)

 10347 1 22 42

 10347 3 13 38

Table 1. Memory usage and CPU time of single block
and multiblock solutions for NACA 4412 airfoil

4–Element Airfoil

To further demonstrate the efficiency of the current
multiblock algorithm, computations were performed on
two 4–element airfoils. The unstructured mesh for the
first configuration was built with 34295 nodes and
68596 cells, which was decomposed into 8 blocks
(Figure 7). It should be pointed that the block bound-
aries are placed in several critical wake regions to test
the robustness and efficiency of the current code, as well
as the accuracy of the block boundary condition as de-
scribed before. The normalized grid spacing on the wall
is 1.x10–5, and the Reynolds number is 9 million, based
on the length of the whole airfoil. Computations are per-
formed for the flow at 00 and 160 angles of attack, and

results are compared with the experimental data in Ref.
[12].

Figure 8 and Figure 9 show the convergence histo-
ries of both multiblock and single block solutions at 00

and 160 angles of attack. The convergence rates of the
multiblock and single block solutions are very similar
for both flow conditions. The computed and measured
Cp distributions on the slat, main, main flap, and auxil-
iary flap surfaces are shown in Figure 10 and Figure 11.
Computed results are generally matched very well with
the experimental data at both 00 and 160 angles of attack.
However, a slight difference was found between the
single block and multiblock solutions on the slat at 00

angle of attack, which may be due to the approximation
used for the gradients at the nodes on phantom edges or
the sawtoothed block interfaces in the multiblock grid.

A numerical test was also conducted on another
4–element airfoil for which the unstructured mesh was
built with 132331 nodes and 264668 cells, and was di-
vided into 10 blocks (Figure 12). The normalized grid
spacing on the wall is 1.x10–6. The inflow conditions in-
clude 20.3180 angle of attack and a Reynolds number of
9 million. Figure 13 shows the contours of the u veloc-
ity components obtained by both single block and multi-
block solutions. It is seen that overall flow patterns be-
tween the two solutions are very similar. Figure 14
shows the convergence histories of both multiblock and
single block solutions. It shows that the performance of
the multiblock solution is not degraded when the num-
ber of blocks is increased.

 Table 2 summarizes the CPU times for 1000 time
steps and memory requirements for the above two grids.
It is seen that the memory savings by the multiblock
solution over the single block solution is 63% for the
8–block grid case, and 70% for the 10–block grid case.
The CPU time for the multiblock solutions is about
30–40% less than that required in the single block solu-

8

Figure 7. 8–block grid for the 4–element airfoil with 34295 nodes

Figure 8. Convergence histories for the 4–element
 airfoil at Re=1x106 and 00 angle of attack

Figure 9. Convergence histories for the 4–element
airfoil at Re=1x106 and 160 angle of attack

0 200 400 600 800 1000
Time Step

–10.0

–8.0

–6.0

–4.0

–2.0

Lo
g

(R
es

id
ua

l)

Single Block (MB=1)
Multiblock (MB=8)

0 200 400 600 800 1000
Time Step

–10.0

–8.0

–6.0

–4.0

–2.0

Lo
g

(R
es

id
ua

l)

Single Block (MB=1)
Multiblock (MB=8)

9

Figure 10. Comparison of Cp distributions for the 4–element airfoil
at Re=9x106 and 00 angle of attack

0. 0.2 0.4 0.6 0.8 1.0
–4.0

–2.0

0.0

2.0

C
p

Aux. Flap

0.0 0.2 0.4 0.6 0.8 1.0
–8.0

–6.0

–4.0

–2.0

0.0

2.0

C
p

Main Flap

0 0.2 0.4 0.6 0.8 1.0

–2.0

–1.0

0.0

1.0

2.0
C

p
Slat

Experimental Data
Single Block Solution
Multiblock Solution

 0.2 0.4 0.6 0.8 1.0
–8.0

–6.0

–4.0

–2.0

0.0

2.0

C
p

Main

 �

 � �

 �

Figure 11. Comparison of Cp distributions for the 4–element airfoil
at Re=9x106 and 160 angle of attack

0.0 0.2 0.4 0.6 0.8 1.0
–15.0

–10.0

–5.0

0.0

5.0

C
p

0.0 0.2 0.4 0.6 0.8 1.0
–15.0

–10.0

–5.0

0.0

5.0

C
p

0.0 0.2 0.4 0.6 0.8 1.0
–10.0

–5.0

0.0

5.0

C
p

0.0 0.2 0.4 0.6 0.8 1.0
–2.0

–1.0

0.0

1.0

2.0

C
p

Experimental Data
Single Block Solution
Multiblock Solution

Main Flap Aux. Flap

MainSlat

 �

 � �

 �

10

Figure 12. 10–block grid for the 4–element airfoil with 132331 nodes

Figure 13. Computed u velocity components around the 4–element airfoil
on grid with 132331 nodes

single block multiblock

11

0 200 400 600 800 1000
Time Step

–7.0

–6.0

–5.0

–4.0

–3.0

–2.0
Lo

g
(R

es
id

ua
l)

Single Block (MB=1)
Multiblock (MB=10)

Figure 14. Convergence histories for 4–element
airfoil with 132331 nodes

tions. It needs to be pointed that the above single block
solutions require about 8–22% more CPU time than the
original code, because of the overhead of the CPU time
introduced by recomputing metric quantities of the grid.
Even though, the multiblock algorithm still saves about
25% of the CPU time compared with the original single
block algorithm.

 Grid
(nodes)

 Blocks Memory
 (MB)

 CPU Time
 (mins)

34295 1 66 229 (188)

34295 8 25 138

132331 1 241 864 (799)

132331 10 69 599

Table 2. Memory usage and CPU times of single block
and multiblock solutions for 4–element airfoils. The
numbers in parenthesis are the CPU time of solutions
where the metric terms of the grid are not recomputed.

Conclusions

The development of a multiblock algorithm to
solve the two–dimensional incompressible Reynolds–
averaging Navier–Stokes equations is presented. The
multiblock technique has been used in many CFD ap-
plications for structured grids. However, little attention
has been given to applying this approach to the unstruc-
tured grid area. Results presented in this work show
that, by properly allocating the memory for the code, the
multiblock solution may save up to 70% of the memory
of the single block solution. In fact, over one order of
magnitude in memory reduction is possible when the

grid is divided into more blocks. Furthermore, the cur-
rent multiblock algorithm does not introduce any over-
head of the CPU time (it even reduces the CPU run time
compared with the single block solutions) on the com-
puter used for the current work. However, it is expected
that the CPU time may go up some on computers where
cache management is less important. Even through, the
features demonstrated from the current multiblock algo-
rithm prove that this technique is a useful alternative to
the disadvantage associated with the large memory re-
quirements of unstructured grid algorithms. Although
the results presented here are for two–dimensional
cases, the concepts and methods of the algorithm are
readily applicable to general three–dimensional com-
pressible and incompressible flow solvers, and the ex-
tension of this approach to three–dimensional flow is
underway now. It is believed that the combination of the
advantages from the multiblock technology and the un-
structured grid technology makes it possible to provide
a highly efficient and cost–effective computational tool
to predict realistic complex flows about complex con-
figurations.

Acknowledgement

The authors wish to thank Mr. Gregory Henley of
the NSF Engineering Research Center for Computation-
al Field Simulation for helpful discussions.

References

[1] Anderson, W.K., Rausch, R.D., and Bonhaus, D.
L., “Implicit/Multigrid Algorithms for Incom-
pressible Turbulent Flows on Unstructured
Grids,” AIAA–95–1740, 1995.

[2] Sheng, C., Taylor, L.K., and Whitfield, D.L.,
“Multiblock Multigrid Solution of Three–Di-
mensional Incompressible Turbulent Flows
About Appended Submarine Configurations,”
AIAA–95–0203, 33rd Aerospace Sciences
Meeting and Exhibit, January 9–12, 1995, Reno,
NV.

[3] Sheng, C., Chen, J.P., Taylor, L.K., Jiang, M.Y.,
and Whitfield, D.L., “Unsteady Multigrid Meth-
od For Simulating 3–D Incompressible Navier–
Stokes Flows on Dynamic Relative Motion
Grids,” AIAA–97–0446, 35th AIAA Aerospace
Sciences Meeting and Exhibit, January 6–10,
1997, Reno, NV.

[4] Baldwin, B., and Barth, T., “A One–Equation
Turbulence Transport Model for High Reynolds
Number Flows of Unstructured Meshes,”
AIAA–91–0721, 29th Aerospace Sciences
Meeting, January, 1991.

12

[5] Spalart P., and Allmaras, S., “A One–Equation
Turbulence Model for Aerodynamic Flows,”
AIAA–92–0439, 29th Aerospace Sciences
Meeting, January, 1991.

[6] Anderson, W.K., and Bonhaus, D. L., “An Im-
plicit Upwind Algorithm for Computing Turbu-
lent Flows on Unstructured Grids,” Computers
and Fluids, Vol.23, No.1, 1994, pp.1–21.

[7] Golub, G. and Loan, C.V., Matrix Computa-
tions, Johns Hopkins Univ. Press, Baltimore,
MD, 1989.

[8] Anderson, W.K., “Grid Generation and Flow
Solution Method For Euler Equations on Un-
structured Grids,” NASA Technical Report TM–
4295, 1992.

[9] Batina, J.T., “Implicit Flux–Split Euler Schemes
for Unsteady Aerodynamic Analysis Involving
Unstructured Dynamic Meshes,” AIAA–90–
0936, 1990.

[10] Barth, T.J., and Linton, S.W., “An Unstructured
Mesh Newton Solver for Compressible Fluid
Flow and Its Parallel Implementation,”
AIAA–95–0221, 33rd Aerospace Sciences
Meeting, January 9–12, 1995, Reno, NV.

[11] Coles, D. and Wadcock, A.J., “Flying–Hot–
Wire Study of Flow Past an NACA 4412 Airfoil
at Maximum Lift,” AIAA Journal, Vol. 17, No.
4, April 1979.

[12] Valarezo, W., Dominik, C., McGhee, R., Good-
man, W., and Paschal, K., “Multi–Element Air-
foil Optimization for Maximum Lift at High Re-
ynolds Number,” AIAA–91–3332–CP, 1991.

